Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2274, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480702

RESUMO

One of the hopes for overcoming the antibiotic resistance crisis is the use of bacteriophages to combat bacterial infections, the so-called phage therapy. This therapeutic approach is generally believed to be safe for humans and animals as phages should infect only prokaryotic cells. Nevertheless, recent studies suggested that bacteriophages might be recognized by eukaryotic cells, inducing specific cellular responses. Here we show that in chickens infected with Salmonella enterica and treated with a phage cocktail, bacteriophages are initially recognized by animal cells as viruses, however, the cGAS-STING pathway (one of two major pathways of the innate antiviral response) is blocked at the stage of the IRF3 transcription factor phosphorylation. This inhibition is due to the inability of RNA polymerase III to recognize phage DNA and to produce dsRNA molecules which are necessary to stimulate a large protein complex indispensable for IRF3 phosphorylation, indicating the mechanism of the antiviral response impairment.


Assuntos
Bacteriófagos , Terapia por Fagos , Humanos , Animais , Bacteriófagos/fisiologia , Galinhas , Imunidade , Antivirais
2.
Apoptosis ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281280

RESUMO

The overuse of antibiotics in both humans and livestock has led to the antibiotic resistance phenomenon which is now considered one of the biggest problems in the modern world. Some antibiotics used to control or prevent infections in livestock poultry were registered a long time ago, and as a result, data on the possible side effects of their use, both for birds and humans, are incomplete and should be updated. An example of such an antibiotic is enrofloxacin which has been widely used in poultry since 1989. Data in recent years have begun to indicate that this antibiotic induces the process of apoptosis in diverse types of eukaryotic cells. Unfortunately, such studies have never been conducted on chicken models even though it is in poultry that this antibiotic is most commonly used. Therefore, the purpose of this work was to investigate whether enrofloxacin induces apoptosis in chicken cells of the UMNSAH/DF-1 line and to study the molecular mechanism of its action. The results of these experiments indicated that enrofloxacin induces apoptosis in chicken cells but not in human HEK-293 and PC3 cells. This induction was accompanied by changes in the morphology and size of mitochondria, the process of apoptosome formation and activation of executive caspases, which clearly indicates the role of the mitochondrial pathway in the induction of apoptosis by enrofloxacin. This study is the first to show the toxicity of enrofloxacin against chicken cells and to demonstrate the exact mechanism of its action. The results presented in this work show the need to monitor the concentration of antibiotic residues in poultry foods as well as to study their impact on public health to guarantee consumer safety and prevent the phenomenon of antibiotic resistance in bacteria.

3.
J Inherit Metab Dis ; 46(5): 916-930, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395296

RESUMO

Until now, only a few studies have focused on the early onset of symptoms of alkaptonuria (AKU) in the pediatric population. This prospective, longitudinal study is a comprehensive approach to the assessment of children with recognized AKU during childhood. The study includes data from 32 visits of 13 patients (five males, eight females; age 4-17 years) with AKU. A clinical evaluation was performed with particular attention to eye, ear, and skin pigmentation, musculoskeletal complaints, magnetic resonance imaging (MRI), and ultrasound (US) imaging abnormalities. The cognitive functioning and adaptive abilities were examined. Molecular genetic analyses were performed. The most common symptoms observed were dark urine (13/13), followed by joint pain (6/13), and dark ear wax (6/13). In 4 of 13 patients the values obtained in the KOOS-child questionnaire were below the reference values. MRI and US did not show degenerative changes in knee cartilages. One child had nephrolithiasis. Almost half of the children with AKU (5/13) presented deficits in cognitive functioning and/or adaptive abilities. The most frequent HGD variants observed in the patients were c.481G>A (p.Gly161Arg) mutation and the c.240A>T (p.His80Gln) polymorphism. The newly described allele of the HGD gene (c.948G>T, p.Val316Phe) which is potentially pathogenic was identified.


Assuntos
Alcaptonúria , Criança , Masculino , Feminino , Humanos , Pré-Escolar , Adolescente , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Alcaptonúria/patologia , Homogentisato 1,2-Dioxigenase/genética , Estudos Prospectivos , Estudos Longitudinais , Mutação
4.
Front Immunol ; 14: 1133358, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304279

RESUMO

Introduction: The problem of antibiotic resistance is a global one, involving many industries and entailing huge financial outlays. Therefore, the search for alternative methods to combat drug-resistant bacteria has a priority status. Great potential is seen in bacteriophages which have the natural ability to kill bacterial cells. Bacteriophages also have several advantages over antibiotics. Firstly, they are considered ecologically safe (harmless to humans, plants and animals). Secondly, bacteriophages preparations are readily producible and easy to apply. However, before bacteriophages can be authorized for medical and veterinary use, they must be accurately characterized in vitro and in vivo to determinate safety. Methods: Therefore, the aim of this study was to verify for the first time the behavioral and immunological responses of both male and female mice (C57BL/6J) to bacteriophage cocktail, composed of two bacteriophages, and to two commonly used antibiotics, enrofloxacin and tetracycline. Animal behavior, the percentage of lymphocyte populations and subpopulations, cytokine concentrations, blood hematological parameters, gastrointestinal microbiome analysis and the size of internal organs, were evaluated. Results: Unexpectedly, we observed a sex-dependent, negative effect of antibiotic therapy, which not only involved the functioning of the immune system, but could also significantly impaired the activity of the central nervous system, as manifested by disruption of the behavioral pattern, especially exacerbated in females. In contrast to antibiotics, complex behavioral and immunological analyses confirmed the lack of adverse effects during the bacteriophage cocktail administration. Discussion: The mechanism of the differences between males and females in appearance of adverse effects, related to the behavioral and immune functions, in the response to antibiotic treatment remains to be elucidated. One might imagine that differences in hormones and/or different permeability of the blood-brain barrier can be important factors, however, extensive studies are required to find the real reason(s).


Assuntos
Antibacterianos , Bacteriófagos , Feminino , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia , Tetraciclina , Enrofloxacina
5.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626750

RESUMO

Development of molecular biology and understanding structures and functions of various biological molecules and entities allowed to construct various sophisticated tools for different biotechnological, medical, and veterinary applications. One of them is the phage display technology, based on the possibility to create specific bacteriophages bearing fusion genes, which code for fusion proteins consisting of a phage coat protein and a peptide of any amino acid sequence. Such proteins retain their biological functions as structural elements of phage virions while exposing foreign peptide sequences on their surfaces. Genetic manipulations allow to construct phage display libraries composed of billions of variants of exposed peptides; such libraries can be used to select peptides of desired features. Although the phage display technology has been widely used in biotechnology and medicine, its applications in veterinary and especially in poultry science were significantly less frequent. Nevertheless, many interesting discoveries have been reported also in the latter field, providing evidence for a possibility of effective applications of phage display-related methods in developing novel diagnostic tools, new vaccines, and innovative potential therapies dedicated to poultry. Especially, infectious diseases caused by avian viruses, bacteria, and unicellular eukaryotic parasites were investigated in this field. These studies are summarized and discussed in this review, with presentation of various possibilities provided by different phage display systems in development of useful and effective products facilitating management of the problem of infectious diseases of poultry.


Assuntos
Bacteriófagos , Doenças Transmissíveis , Animais , Humanos , Biblioteca de Peptídeos , Aves Domésticas , Peptídeos/química , Bacteriófagos/genética , Bacteriófagos/metabolismo
6.
Antibiotics (Basel) ; 11(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551444

RESUMO

Previous studies indicated that the use of a phage cocktail, composed of bacteriophages vB_SenM-2 and vB_Sen-TO17, is effective in killing cells of Salmonella enterica serovars Typhimurium and Enteritidis in vitro and in the Galleria mellonella animal model as efficiently as antibiotics (enrofloxacin or colistin) and induced fewer deleterious changes in immune responses. Here, we investigated the effects of this phage cocktail on the hematological parameters and selected biochemical markers in chickens infected with S. enterica serovar Typhimurium, in comparison to those caused by enrofloxacin or colistin. We found that treatment with antibiotics (especially with enrofloxacin) caused nonbeneficial effects on red blood cell parameters, including hematocrit, MCV, MCH, and MCHC. However, Salmonella-induced changes in the aforementioned parameters were normalized by the use of the phage cocktail. Importantly, hepatotoxicity was suggested to be induced by both antibiotics on the basis of increased alanine transaminase (ALT) and aspartate aminotransferase (AST) activities, in contrast to the phage cocktail, which did not influence these enzymes. We conclude that phage therapy with the cocktail of vB_SenM-2 and vB_Sen-TO17 in Salmonella-infected chickens is not only as effective as antibiotics but also significantly safer for the birds than enrofloxacin and colistin.

7.
Front Immunol ; 13: 956833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211337

RESUMO

The appearance of bacteria resistant to most or even all known antibiotics has become a serious medical problem. One such promising and effective alternative form of therapy may be the use of phages, the administration of which is considered to be safe and highly effective, especially in animals with drug-resistant infections. Although there have been no reports to date suggesting that bacteriophages can cause any severe complications or adverse effects, we still know little about their interactions with animal organisms, especially in the context of the functioning of the immune system. Therefore, the aim of the present study was to compare the impact of the application of selected bacteriophages and antibiotics (enrofloxacin and colistin), commonly used in veterinary medicine, on immune functions in Salmonella enterica serovar Typhimurium-infected chickens. The birds were infected with S. Typhimurium and then treated with a phage cocktail (14 days), enrofloxacin (5 days), or colistin (5 days). The concentrations of a panel of pro-inflammatory cytokines (IL-1ß, IL-6, IFN-γ, IL-8, and IL-12) and cytokines that reveal anti-inflammatory effects (IL-10 and IL-4), the percentage of lymphocytes, and the level of stress hormones (corticosterone and cortisol), which significantly modulate the immune responses, were determined in different variants of the experiment. The phage cocktail revealed anti-inflammatory effects when administered either 1 day after infection or 2 days after S. Typhimurium detection in feces, as measured by inhibition of the increase in levels of inflammatory response markers (IL-1ß, IL-6, IFN-γ, IL-8, and IL-12). This was also confirmed by increased levels of cytokines that exert an anti-inflammatory action (IL-10 and IL-4) following phage therapy. Moreover, phages did not cause a negative effect on the number and activity of lymphocytes' subpopulations crucial for normal immune system function. These results indicate for the first time that phage therapy not only is effective but also can be used in veterinary medicine without disturbing immune homeostasis, expressed as cytokine imbalance, disturbed percentage of key immune cell subpopulations, and stress axis hyperactivity, which were observed in our experiments as adverse effects accompanying the antibiotic therapy.


Assuntos
Bacteriófagos , Terapia por Fagos , Animais , Antibacterianos/uso terapêutico , Galinhas , Colistina , Corticosterona , Citocinas , Enrofloxacina/uso terapêutico , Hidrocortisona , Interleucina-10 , Interleucina-12 , Interleucina-4 , Interleucina-6 , Interleucina-8 , Salmonella typhimurium , Sorogrupo
8.
Methods Mol Biol ; 2538: 189-205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35951301

RESUMO

Bacterial functional amyloids, apart from their many other functions, can influence the resistance of bacteria to antibiotics and other antibacterial agents. Mechanisms of modulation of susceptibility of bacterial cells to antimicrobials can be either indirect or direct. The former mechanisms are exemplified by the contribution of functional amyloids to biofilm formation, which may effectively prevent the penetration of various compounds into bacterial cells. The direct mechanisms include the effects of bacterial proteins revealing amyloid-like structures, like the C-terminal region of the Escherichia coli Hfq protein, on the expression of genes involved in antibiotic resistance. Therefore, in this paper, we describe methods by which effects and mechanisms of action of bacterial amyloids on antibiotic resistance can be studied. Assessment of formation of biofilms, determination of the efficiency of antibiotic resistance in solid and liquid media, and determination of the effects on gene expression at levels of mRNA abundance and stability and protein abundance are described.


Assuntos
Biofilmes , Escherichia coli , Amiloide/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos , Escherichia coli/metabolismo
9.
Front Cell Infect Microbiol ; 12: 941867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992162

RESUMO

Phage therapy is a promising alternative treatment of bacterial infections in human and animals. Nevertheless, despite the appearance of many bacterial strains resistant to antibiotics, these drugs still remain important therapeutics used in human and veterinary medicine. Although experimental phage therapy of infections caused by Salmonella enterica was described previously by many groups, those studies focused solely on effects caused by bacteriophages. Here, we compared the use of phage therapy (employing a cocktail composed of two previously isolated and characterized bacteriophages, vB_SenM-2 and vB_Sen-TO17) and antibiotics (enrofloxacin and colistin) in chickens infected experimentally with S. enterica serovar Typhimurium. We found that the efficacies of both types of therapies (i.e. the use of antibiotics and phage cocktail) were high and very similar to one another when the treatment was applied shortly (one day) after the infection. Under these conditions, S. Typhimurium was quickly eliminated from the gastrointestinal tract (GIT), to the amount not detectable by the used methods. However, later treatment (2 or 4 days after detection of S. Typhimurium in chicken feces) with the phage cocktail was significantly less effective. Bacteriophages remained in the GIT for up to 2-3 weeks, and then were absent in feces and cloaca swabs. Interestingly, both phages could be found in various organs of chickens though with a relatively low abundance. No development of resistance of S. Typhimurium to phages or antibiotics was detected during the experiment. Importantly, although antibiotics significantly changed the GIT microbiome of chickens in a long-term manner, analogous changes caused by phages were transient, and the microbiome normalized a few weeks after the treatment. In conclusion, phage therapy against S. Typhimurium infection in chickens appeared as effective as antibiotic therapy (with either enrofloxacin or colistin), and less invasive than the use the antibiotics as fewer changes in the microbiome were observed.


Assuntos
Bacteriófagos , Terapia por Fagos , Salmonelose Animal , Salmonella enterica , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Galinhas , Colistina/farmacologia , Enrofloxacina/farmacologia , Salmonelose Animal/microbiologia , Salmonelose Animal/terapia , Salmonella typhimurium , Sorogrupo
10.
Microbiol Res ; 261: 127052, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35533436

RESUMO

In light of spreading antibiotic resistance among pathogenic bacteria, the development of novel approaches to combat such microorganisms is crucial. Salmonella enterica is pathogenic to humans, however, it can also infect poultry, being a potential foodborne pathogen when poultry-derived food is contaminated by this bacterium. Phage therapy is one of the alternative ways to treat Salmonella-infected animals while the establishment of this method and its introduction to a general practice requires detailed studies on safety and efficacy. Here, we present the results of such studies with two previously isolated and characterized bacteriophages, vB_SenM2 and vB_Sen-TO17, and four strains of S. enterica belonging to two serovars, Typhimurium and Enteritidis. We demonstrated effective reduction of bacterial cell number and cell culture density when using each phage alone, and in combination (as a cocktail). These phages were also effective in reducing bacterial biofilm. The efficacy of this in vitro phage therapy was compared to the action of known antibiotics, as was the efficiency of appearance of bacteria resistant to both these types of antibacterial agents. Safety of the use of bacteriophages was demonstrated using the LAL chromogenic test and the chicken fibroblast viability assay. Finally, the efficacy of phage therapy was assessed with the in vivo model of S. enterica-infected Galleria mellonella larvae, showing a significant improvement in the survival of the animals. In conclusion, we demonstrated high efficacy and acceptable safety profiles of phage therapy against S. enterica strains using vB_SenM-2 and vB_Sen-TO17 phages (both alone and in a cocktail). These results open a possibility for a trial with the use of poultry and these phages which might potentially allow to introduce of this method for practical use in poultry farming.


Assuntos
Bacteriófagos , Terapia por Fagos , Fagos de Salmonella , Salmonella enterica , Animais , Modelos Animais de Doenças , Técnicas In Vitro , Aves Domésticas , Salmonella enteritidis , Salmonella typhimurium , Sorogrupo
11.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409007

RESUMO

Enrofloxacin is a compound that originates from a group of fluoroquinolones that is widely used in veterinary medicine as an antibacterial agent (this antibiotic is not approved for use as a drug in humans). It reveals strong antibiotic activity against both Gram-positive and Gram-negative bacteria, mainly due to the inhibition of bacterial gyrase and topoisomerase IV enzymatic actions. The high efficacy of this molecule has been demonstrated in the treatment of various animals on farms and other locations. However, the use of enrofloxacin causes severe adverse effects, including skeletal, reproductive, immune, and digestive disorders. In this review article, we present in detail and discuss the advantageous and disadvantageous properties of enrofloxacin, showing the benefits and risks of the use of this compound in veterinary medicine. Animal health and the environmental effects of this stable antibiotic (with half-life as long as 3-9 years in various natural environments) are analyzed, as are the interesting properties of this molecule that are expressed when present in complexes with metals. Recommendations for further research on enrofloxacin are also proposed.


Assuntos
Antibacterianos , Infecções Bacterianas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/veterinária , Enrofloxacina/farmacologia , Enrofloxacina/uso terapêutico , Células Eucarióticas , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Bactérias Gram-Negativas , Bactérias Gram-Positivas
12.
Materials (Basel) ; 14(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34640213

RESUMO

This paper analyzes the energy efficiency of a Micro Fiber Composite (MFC) piezoelectric system. It is based on a smart Lead Zirconate Titanate material that consists of a monolithic PZT (piezoelectric ceramic) wafer, which is a ceramic-based piezoelectric material. An experimental test rig consisting of a wind tunnel and a developed measurement system was used to conduct the experiment. The developed test rig allowed changing the air velocity around the tested bluff body and the frequency of forced vibrations as well as recording the output voltage signal and linear acceleration of the tested object. The mechanical vibrations and the air flow were used to find the optimal performance of the piezoelectric energy harvesting system. The performance of the proposed piezoelectric wind energy harvester was tested for the same design, but of different masses. The geometry of the hybrid bluff body is a combination of cuboid and cylindrical shapes. The results of testing five bluff bodies for a range of wind tunnel air flow velocities from 4 to 15 m/s with additional vibration excitation frequencies from 0 to 10 Hz are presented. The conducted tests revealed the areas of the highest voltage output under specific excitation conditions that enable supplying low-power sensors with harvested energy.

13.
Antibiotics (Basel) ; 10(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34680793

RESUMO

Resistance of bacteria, fungi and cancer cells to antibiotics and other drugs is recognized as one of the major problems in current medicine. Therefore, a search for new biologically active compounds able to either kill pathogenic cells or inhibit their growth is mandatory. Hard-to-reach habitats appear to be unexplored sources of microorganisms producing previously unknown antibiotics and other molecules revealing potentially therapeutic properties. Caves belong to such habitats, and Actinobacteria are a predominant group of microorganisms occurring there. This group of bacteria are known for production of many antibiotics and other bioactive compounds. Interestingly, it was demonstrated previously that infection with bacteriophages might enhance production of antibiotics by them. Here, we describe a series of newly isolated strains of Actinobacteria that were found in caves from the Tatra Mountains (Poland). Phage induction tests indicated that some of them may bear active prophages able to produce virions upon treatment with mitomycin C or UV irradiation. Among all the examined bacteria, two newly isolated Streptomyces sp. strains were further characterized to demonstrate their ability to inhibit the growth of pathogenic bacteria (strains of Staphylococcus aureus, Salmonella enterica, Enterococcus sp., Escherichia coli, and Pseudomonas aeruginosa) and fungi (different species and strains from the genus Candida). Moreover, extracts from these Streptomyces strains reduced viability of the breast-cancer cell line T47D. Chemical analyses of these extracts indicated the presence of isomers of dichloranthrabenzoxocinone and 4,10- or 10,12-dichloro-3-O-methylanthrabenzoxocinone, which are putative antimicrobial compounds. Moreover, various previously unknown (unclassified) molecules were also detected using liquid chromatography-mass spectrometry, suggesting that tested Streptomyces strains may synthesize a battery of bioactive compounds with antibacterial, antifungal, and anticancer activities. These results indicate that further studies on the newly isolated Actinobacteria might be a promising approach to develop novel antibacterial, antifungal, and/or anticancer drugs.

14.
Acta Biochim Pol ; 68(4): 565-574, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34536268

RESUMO

Rapid development of antibiotic resistance of bacteria and fungi, as well as cancer drug resistance, has become a global medical problem. Therefore, alternative methods of treatment are considered. Studies of recent years have focused on finding new biologically active compounds that may be effective against drug-resistant cells. High biodiversity of hard-to-reach environments offers sources to search for novel molecules potentially applicable for medical purposes. In this review article, we summarize and discuss compounds produced by microorganisms from hot springs, glaciers, caves, underground lakes, marine ecosystems, and hydrothermal vents. Antibacterial, antiviral, antifungal, anticancer, anti-inflammatory, and antioxidant potential of these molecules are presented and discussed. We conclude that using compounds derived from microorganisms occurring in extreme environments might be considered in further studies on development of treatment procedures for diseases caused by drug-resistant cells.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Extremófilos/metabolismo , Microbiota , Anti-Infecciosos/isolamento & purificação , Antineoplásicos/isolamento & purificação , Biodiversidade , Produtos Biológicos/isolamento & purificação
15.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445641

RESUMO

Bacteriophages are viruses infecting bacterial cells. Since there is a lack of specific receptors for bacteriophages on eukaryotic cells, these viruses were for a long time considered to be neutral to animals and humans. However, studies of recent years provided clear evidence that bacteriophages can interact with eukaryotic cells, significantly influencing the functions of tissues, organs, and systems of mammals, including humans. In this review article, we summarize and discuss recent discoveries in the field of interactions of phages with animal and human organisms. Possibilities of penetration of bacteriophages into eukaryotic cells, tissues, and organs are discussed, and evidence of the effects of phages on functions of the immune system, respiratory system, central nervous system, gastrointestinal system, urinary tract, and reproductive system are presented and discussed. Modulations of cancer cells by bacteriophages are indicated. Direct and indirect effects of virulent and temperate phages are discussed. We conclude that interactions of bacteriophages with animal and human organisms are robust, and they must be taken under consideration when using these viruses in medicine, especially in phage therapy, and in biotechnological applications.


Assuntos
Bacteriófagos/fisiologia , Neoplasias/terapia , Terapia por Fagos/métodos , Receptores de Superfície Celular/metabolismo , Animais , Disponibilidade Biológica , Biotecnologia , Humanos , Neoplasias/virologia , Farmacocinética
16.
Postepy Biochem ; 67(2): 130-140, 2021 06 30.
Artigo em Polonês | MEDLINE | ID: mdl-34378889

RESUMO

The aim of this article is to synthesize informations about monoamine oxidase inhibitors drugs (MAOI) used in the treatment of depression. General informations on monoamine oxidase (MAO) and its kinetic properties are presented. MAO is an enzyme that degrades catecholamines and their 3-methoxy derivatives and other monoamines, for example serotonin or tryptamine. The criteria and symptoms of depressive disorders are discussed. They have to be distinguished from the state of sadness and similar states. The basic symptoms include: voice, facial expressions, anhedonia and psychomotor slowness. They may differ in individual diagnostic units. The following basic mechanism of the pharmacological action of MAOI has been indicated: when a drug inhibits MAO, the degradation of monoamines decreases and the concentration of the neurotransmitter in the synaptic cleft increases. Informations on selected selective and reversible MAOI-A are presented in the following sections. These are currently the safest and most effective MAOI drugs that can be used in the treatment of depressive diseases. The following drugs are discussed: moclobemide, befloxatone, toloxatone and brofaromine. Final conclusions are given and the presented data summarized.


Assuntos
Depressão , Inibidores da Monoaminoxidase , Depressão/tratamento farmacológico , Humanos , Moclobemida , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/uso terapêutico
17.
Microbiol Res ; 248: 126746, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33773329

RESUMO

Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.


Assuntos
Bactérias/virologia , Bacteriófagos/enzimologia , Membrana Celular/virologia , Parede Celular/virologia , Enzimas/metabolismo , Proteínas Virais/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bacteriófagos/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Enzimas/genética , Interações Hospedeiro-Patógeno , Proteínas Virais/genética
18.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33233449

RESUMO

Two newly discovered bacteriophages, isolated from chicken feces and infecting Salmonella enterica strains, are described in this report. These phages have been named vB_Sen-TO17 and vB_Sen-E22, and we present their molecular and functional characterization. Both studied viruses are able to infect several S. enterica strains and develop lytically, but their specific host ranges differ significantly. Electron microscopic analyses of virions have been performed, and full genome sequences were determined and characterized, along with molecular phylogenetic studies. Genomes of vB_Sen-TO17 (ds DNA of 41,658 bp) and vB_Sen-E22 (dsDNA of 108,987 bp) are devoid of homologs of any known or putative gene coding for toxins or any other proteins potentially deleterious for eukaryotic cells. Both phages adsorbed efficiently (>95% adsorbed virions) within 10 min at 42 °C (resembling chicken body temperature) on cells of most tested host strains. Kinetics of lytic development of vB_Sen-TO17 and vB_Sen-E22, determined in one-step growth experiments, indicated that development is complete within 30-40 min at 42 °C, whereas burst sizes vary from 9 to 79 progeny phages per cell for vB_Sen-TO17 and from 18 to 64 for vB_Sen-E22, depending on the host strain. Virions of both phages were relatively stable (from several percent to almost 100% survivability) under various conditions, including acidic and alkaline pH values (from 3 to 12), temperatures from -80 °C to 60 °C, 70% ethanol, chloroform, and 10% DMSO. These characteristics of vB_Sen-TO17 and vB_Sen-E22 indicate that these phages might be considered in further studies on phage therapy, particularly in attempts to eliminate S. enterica from chicken intestine.


Assuntos
Bacteriófagos/isolamento & purificação , Galinhas/virologia , Genoma Viral/genética , Salmonella enterica/genética , Animais , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/ultraestrutura , Galinhas/genética , Fezes/virologia , Especificidade de Hospedeiro/genética , Filogenia , Salmonella enterica/virologia , Vírion/genética , Vírion/isolamento & purificação , Vírion/ultraestrutura
19.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858954

RESUMO

Molecular and functional characterization of a series of three bacteriophages, vB_SenM-1, vB_SenM-2, and vB_SenS-3, infecting various Salmonella enterica serovars and strains is presented. All these phages were able to develop lytically while not forming prophages. Moreover, they were able to survive at pH 3. The phages revealed different host ranges within serovars and strains of S. enterica, different adsorption rates on host cells, and different lytic growth kinetics at various temperatures (in the range of 25 to 42 °C). They efficiently reduced the number of cells in the bacterial biofilm and decreased the biofilm mass. Whole genome sequences of these phages have been determined and analyzed, including their phylogenetic relationships. In conclusion, we have demonstrated detailed characterization of a series of three bacteriophages, vB_SenM-1, vB_SenM-2, and vB_SenS-3, which reveal favorable features in light of their potential use in phage therapy of humans and animals, as well as for food protection purposes.


Assuntos
Bacteriófagos/classificação , Salmonella enterica/classificação , Salmonella enterica/virologia , Bacteriófagos/genética , Bacteriófagos/fisiologia , Genoma Viral , Especificidade de Hospedeiro , Filogenia , Salmonella enterica/genética , Análise de Sequência de DNA , Temperatura , Sequenciamento Completo do Genoma
20.
Sci Rep ; 10(1): 3743, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111934

RESUMO

The characterization of a recently isolated bacteriophage, vB_Eco4M-7, which effectively infects many, though not all, Escherichia coli O157 strains, is presented. The genome of this phage comprises double-stranded DNA, 68,084 bp in length, with a GC content of 46.2%. It contains 96 putative open reading frames (ORFs). Among them, the putative functions of only 35 ORFs were predicted (36.5%), whereas 61 ORFs (63.5%) were classified as hypothetical proteins. The genome of phage vB_Eco4M-7 does not contain genes coding for integrase, recombinase, repressors or excisionase, which are the main markers of temperate viruses. Therefore, we conclude that phage vB_Eco4M-7 should be considered a lytic virus. This was confirmed by monitoring phage lytic development by a one-step growth experiment. Moreover, the phage forms relatively small uniform plaques (1 mm diameter) with no properties of lysogenization. Electron microscopic analyses indicated that vB_Eco4M-7 belongs to the Myoviridae family. Based on mass spectrometric analyses, including the fragmentation pattern of unique peptides, 33 phage vB_Eco4M-7 proteins were assigned to annotated open reading frames. Importantly, genome analysis suggested that this E. coli phage is free of toxins and other virulence factors. In addition, a similar, previously reported but uncharacterized bacteriophage, ECML-117, was also investigated, and this phage exhibited properties similar to vB_Eco4M-7. Our results indicate that both studied phages are potential candidates for phage therapy and/or food protection against Shiga toxin-producing E. coli, as the majority of these strains belong to the O157 serotype.


Assuntos
Escherichia coli O157/virologia , Myoviridae , Fases de Leitura Aberta , Proteínas Virais/genética , Escherichia coli O157/genética , Escherichia coli O157/ultraestrutura , Myoviridae/classificação , Myoviridae/genética , Myoviridae/metabolismo , Myoviridae/ultraestrutura , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...